Uniqueness of Entropy Solutions for Doubly Nonlinear Anisotropic Degenerate Parabolic Equations

نویسندگان

  • MOSTAFA BENDAHMANE
  • KENNETH H. KARLSEN
  • K. H. KARLSEN
چکیده

We consider doubly nonlinear anisotropic degenerate parabolic equations, supplemented with an initial condition and a homogeneous Dirichlet boundary condition. We introduce a notion of entropy solution and prove that the entropy solution is uniquely determined by its data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renormalized Entropy Solutions for Quasi-linear Anisotropic Degenerate Parabolic Equations

We prove the well-posedness (existence and uniqueness) of renormalized entropy solutions to the Cauchy problem for quasi-linear anisotropic degenerate parabolic equations with L1 data. This paper complements the work by Chen and Perthame [9], who developed a pure L1 theory based on the notion of kinetic solutions.

متن کامل

Discrete Duality Finite Volume Schemes for Doubly Nonlinear Degenerate Hyperbolic-parabolic Equations

We consider a class of doubly nonlinear degenerate hyperbolicparabolic equations with homogeneous Dirichlet boundary conditions, for which we first establish the existence and uniqueness of entropy solutions. We then turn to the construction and analysis of discrete duality finite volume schemes (in the spirit of Domelevo and Omnès [41]) for these problems in two and three spatial dimensions. W...

متن کامل

On Uniqueness and Existence of Entropy Solutions of Weakly Coupled Systems of Nonlinear Degenerate Parabolic Equations

We prove existence and uniqueness of entropy solutions for the Cauchy problem of weakly coupled systems of nonlinear degenerate parabolic equations. We prove existence of an entropy solution by demonstrating that the Engquist-Osher finite difference scheme is convergent and that any limit function satisfies the entropy condition. The convergence proof is based on deriving a series of a priori e...

متن کامل

A note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations

Following the lead of [Carrillo, Arch. Ration. Mech. Anal. 147 (1999) 269–361], recently several authors have used Kružkov’s device of “doubling the variables” to prove uniqueness results for entropy solutions of nonlinear degenerate parabolic equations. In all these results, the second order differential operator is not allowed to depend explicitly on the spatial variable, which certainly rest...

متن کامل

Large-time Behavior of Periodic Entropy Solutions to Anisotropic Degenerate Parabolic-hyperbolic Equations

We are interested in the large-time behavior of periodic entropy solutions in L to anisotropic degenerate parabolic-hyperbolic equations of second-order. Unlike the pure hyperbolic case, the nonlinear equation is no longer self-similar invariant and the diffusion term in the equation significantly affects the large-time behavior of solutions; thus the approach developed earlier based on the sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004